Geometry: 2.4-2.6 Notes

2.4 Use and understand properties of equality Define Vocabulary:

equation

solve an equation

formula

Core Concepts

Algebraic Properties of Equality

Let *a*, *b*, and *c* be real numbers.

Addition Property of Equality	If $a = b$, then $a + c = b + c$.
Subtraction Property of Equality	If $a = b$, then $a - c = b - c$.
Multiplication Property of Equality	If $a = b$, then $a \bullet c = b \bullet c$, $c \neq 0$.
Division Property of Equality	If $a = b$, then $\frac{a}{c} = \frac{b}{c}$, $c \neq 0$.
Substitution Property of Equality	If $a = b$, then a can be substituted for b (or b for a) in any equation or expression.

Examples: Justifying steps. Solve the equations and justify each step.

<u>WE DO</u>	YOU DO
2x - 5 = 13	-2x - 9 = 10x - 17

Date:

NAME_____

Distributive Property

Let *a*, *b*, and *c* be real numbers.

Sum a(b + c) = ab + ac Difference a(b - c) = ab - ac

Examples: Using the distributive property. Solve the equations and justify each step.

<u>WE DO</u>	YOU DO
2(x+1) = -4	3(3x + 14) = -3

Examples: Solve the equation for the given variable.

WE DO	<u>YOU DO</u>
9x + 2y = 5; y	$\frac{1}{15}s - \frac{2}{3}t = -2; s$

Examples: Solve the real-life problem.

WE DO

The formula for the surface area *S* of a cone is $S = \pi r^2 + \pi rs$, where *r* is the radius and *s* is the slant height. Solve the formula for *s*. Justify each step. Then find the slant height of the cone when the surface area is 220 square feet and the radius is 7 feet. Approximate to the nearest tenth.

	Real Numbers	Segment Lengths	Angle Measures
Reflexive Property	a = a	AB = AB	$m \angle A = m \angle A$
Symmetric Property	If $a = b$, then b = a.	If $AB = CD$, then CD = AB.	If $m \angle A = m \angle B$, then $m \angle B = m \angle A$.
Transitive Property	If $a = b$ and b = c, then a = c.	If $AB = CD$ and $CD = EF$, then $AB = EF$.	If $m \angle A = m \angle B$ and $m \angle B = m \angle C$, then $m \angle A = m \angle C$.

Reflexive, Symmetric, and Transitive Properties of Equality

Examples: Using properties of equality. Name the property of equality that the statement illustrates.

YOU DO

3) $m \angle 1 = m \angle 2$ and $m \angle 2 = m \angle 5$. So, $m \angle 1 = m \angle 5$.

WE DO

1)	If $m \angle 6 =$	m/7	then	m/7	= m	/6.
1)	$m_{m_{z}0}$	<i>m∠i</i> ,	unen	$m \ge r$		<u>_</u> 0.

2) $34^\circ = 34^\circ$

Assignment

2.5 Write two-column proofs.

Define Vocabulary:

Proof

Two-column proof

Theorem

Writing Two-Column Proofs

A **proof** is a logical argument that uses deductive reasoning to show that a statement is true. There are several formats for proofs. A **two-column proof** has numbered statements and corresponding reasons that show an argument in a logical order.

In a two-column proof, each statement in the left-hand column is either given information or the result of applying a known property or fact to statements already made. Each reason in the right-hand column is the explanation for the corresponding statement.

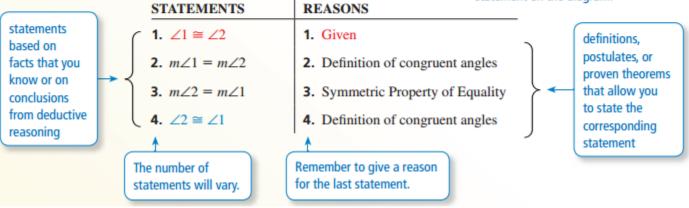
Writing a Two-Column Proof

In a proof, you make one statement at a time until you reach the conclusion. Because you make statements based on facts, you are using deductive reasoning. Usually the first statement-and-reason pair you write is given information.

Proof of the Symmetric Property of Angle Congruence

Given $\angle 1 \cong \angle 2$ Prove $\angle 2 \cong \angle 1$

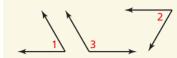
Copy or draw diagrams and label given information to help develop proofs. Do not mark or label the information in the Prove statement on the diagram.



Examples: Writing a Two-Column Proof

WE DO

Given $\angle 1$ is supplementary to $\angle 3$. $\angle 2$ is supplementary to $\angle 3$. Prove $\angle 1 \cong \angle 2$



YOU DO

Given <i>T</i> is the midpoint of \overline{SU} . Prove $x = 5$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
STATEMENTS	REASONS
1. T is the midpoint of \overline{SU} .	1
2. $\overline{ST} \cong \overline{TU}$	2. Definition of midpoint
3. $ST = TU$	3. Definition of congruent segments
4. $7x = 3x + 20$	4
5	5. Subtraction Property of Equality
6. <i>x</i> = 5	6

Theorem 2.1 Properties of Segment Congruence

Segment congruence is reflexive, symmetric, and transitive.

Reflexive	For any segment AB , $\overline{AB} \cong \overline{AB}$.
Symmetric	If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$.
Transitive	If $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$.

Theorem 2.2 Properties of Angle Congruence

Angle congruence is reflexive, symmetric, and transitive.

Reflexive	For any angle A, $\angle A \cong \angle A$.
Symmetric	If $\angle A \cong \angle B$, then $\angle B \cong \angle A$.
Transitive	If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$.

Examples: Name the property that the statement illustrates.

WE DO

a. If $\angle RST \cong \angle TSU$ and $\angle TSU \cong \angle VWX$, then $\angle RST \cong \angle VWX$. **a.** $\angle A \cong \angle A$

b. If $\overline{GH} \cong \overline{JK}$, then $\overline{JK} \cong \overline{GH}$.

b. If
$$\overline{PQ} \cong \overline{JG}$$
 and $\overline{JG} \cong \overline{XY}$, then $\overline{PQ} \cong \overline{XY}$.

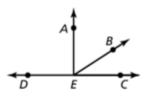
YOU DO

Examples: <u>WE DO</u>

Given \overline{AB} and \overline{CD} bisect each other other $\overline{AB} = AM + DM$	her at point M and $\overline{BM} \cong \overline{CM}$.
STATEMENTS	REASONS C B
1. $\overline{BM} \cong \overline{CM}$	1. Given
2. $\overline{CM} \cong \overline{DM}$	2
3. $\overline{BM} \cong \overline{DM}$	3
4. BM = DM	4
5	5. Segment Addition Postulate (Post. 1.2)
$6. \ AB = AM + DM$	б

YOU DO

Given $\angle AEB$ is a complement of $\angle BEC$. **Prove** $m \angle AED = 90^{\circ}$



STATEMENTS	REASONS
1. $\angle AEB$ is a complement of $\angle BEC$.	1. Given
2	2. Definition of complementary angles
3. $m \angle AEC = m \angle AEB + m \angle BEC$	3
4. $m \angle AEC = 90^{\circ}$	4
5. $m \angle AED + m \angle AEC = 180^{\circ}$	5. Definition of supplementary angles
б	6. Substitution Property of Equality
7. $m \angle AED = 90^{\circ}$	7

Assignment			

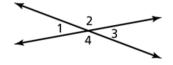
Postulate 2.8 Linear Pair Postulate

If two angles form a linear pair, then they are supplementary.

 $\angle 1$ and $\angle 2$ form a linear pair, so $\angle 1$ and $\angle 2$ are supplementary and $m \angle 1 + m \angle 2 = 180^{\circ}$.

Theorem 2.6 Vertical Angles Congruence Theorem

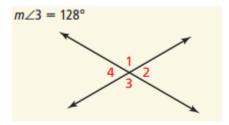
Vertical angles are congruent.

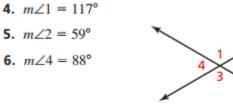


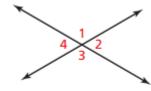
 $\angle 1 \cong \angle 3, \angle 2 \cong \angle 4$

Examples: Use the diagram and the given angle measure to find the other three angle measures.

WE DO

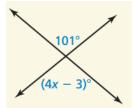


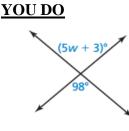




Examples: Find the value of the variable.

WE DO





|--|

7